Главная Упрощенный режим Видео-инструкция Описание
Авторизация
Фамилия
Пароль
 

Базы данных


Периодические издания- результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: <.>II=УУ60/2020/92/3<.>
Общее количество найденных документов : 12
Показаны документы с 1 по 12
1.


    Chernyshenko, V. O.
    Men of the molecules / V. O. Chernyshenko // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P86-90


MeSH-главная:
БИОХИМИЯ -- BIOCHEMISTRY (тенденции)
Аннотация: In memoriam Eduard Lugovskoi and Russell Doolittle we are referring to several episodes of their life and work. Russell Doolittle an American biochemist and his friend and colleague Ukrainian scientist Eduard Lugovskoi, both studied fibrinogen structure and functions and finally united their efforts in the revealing of the new mechanism of intramolecular interactions of fibrin molecule through coiled-coil region. The results of their common work and discussions were included to the article “The fibrin Bβ125-135 site is involved in the lateral association of protofibrils”. Valuable part of the communication dedicated to the poetry of Eduard Lugovskoi that inspired both of scientists in work and life. We are providing some remembrance of their collaboration, their letters sent to each other, fragments of handwriting and common photo of Russell Doolittle and Eduard Lugovskoi
Доп.точки доступа:
Lugovskoi, Eduard (17.11.1937) \о нем\
Doolittle, Russell (January 10, 1931 – October 11, 2019) \о нем\

Свободных экз. нет

Найти похожие

2.


    Chernyshenko, V.
    Presenting thematic ’Molecular and clinical studies of hemostasis’ issue / V. Chernyshenko, S. Komisarenko // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P5


MeSH-главная:
ГЕМОСТАЗ -- HEMOSTASIS (воздействие облучения, генетика, действие лекарственных препаратов, иммунология, физиология)
Аннотация: Study of blood coagulation system became even more requested in recent year since the COVID-19 pandemia began. 2020 that was planned for the celebration of 75th Anniversary of Ukrainian hemostasiology and for publishing of this Issue turned out as the year of world-wide splash of the infection which has thrombosis as the most severe complication that can cause the death of patients. The opening review written by Dr Sandor Vari is summarizing the most recent findings on the pathogenesis and treatment of COVID-19, focusing on markers of endothelial dysfunction and thrombosis during this pathology. The nature and mechanisms of blood coagulation was the object of scientific interest worldwide since Hippocrates introduced the term “thrombus” to describe the blood clot. Ukrainian school of hemostasiology was founded by academician Volodymyr Belitser (1906-1988), remarkable scientist who was one of the most important contributors to the oxidative phosphorylation theory. In 1944 Volodymyr Belitser became the first Head of the laboratory of enzymes, later reorganized into Protein Structure and Functions department, that was focused on the blood circulation and clotting. This Issue of The Ukrainian Biochemical Journal ‘Molecular and clinical studies of hemostasis’ can be assumed as the peculiar tribute to the school of Belitser presenting articles of Professors Leonid Medved, Yevgen Makogonenko and Eduard Lugovskoi which were the Heads of Protein Structure and Functions department in 1987-1998, 1998-2001 and 2009-2019 respectively, and two experimental works by scientists of Palladin Institute of Biochemistry of NAS of Ukraine focused on blood coagulation and fibrinolysis mechanisms. Tight connection between scientific explorations and medical use of knowledge in the field of hemostasiology is underlined by works of Vinnytsia and Ivano-Frankivsk medical Universities that are also presented in this Issue. We are presenting ‘Molecular and clinical studies of hemostasis’ – the Thematic Issue of the Ukrainian biochemical journal – with a great hope and expectance that molecular studies and clinical approvals presenting in our collection one day will allow to overwhelm the deadly thrombotic complications of SARS-CoV-2 infection. Possibly the International project initiated by the RECOOP HST Association (that also guided the edition of this Issue) will have a chance to contribute to it
Доп.точки доступа:
Komisarenko, S.

Свободных экз. нет

Найти похожие

3.


   
    D-dimer as a potential predictor of thromboembolic and cardiovascular complications in patients with chronic kidney disease / I. S. Mykhaloiko [et al.] // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P71-76


MeSH-главная:
ТРОМБОЭМБОЛИЯ -- THROMBOEMBOLISM (патофизиология, этиология)
СЕРДЕЧНО-СОСУДИСТЫЕ БОЛЕЗНИ -- CARDIOVASCULAR DISEASES (патофизиология, этиология)
ДЕТИ -- CHILD
Аннотация: The aim of the study was to evaluate the relationship between D-dimer levels and different biomarkers­ of renal diseases to identify the relationship between hypercoagulation and chronic kidney disease (CKD). To achieve this aim, we conducted a one-step prospective observational study involving 140 patients with CKD who were hospitali­zed in Ivano-Frankivsk Regional Clinical Hospital in Ukraine during 2018-2019. Of these patients, 100 patients (71.4%; 95% CI 53.4-76.7) had glomerulonephritis (GN) and 40 patients (28,6%; 95% CI 21.3-36.8) had diabetic nephropathy (DN). All patients underwent standard examination, which included general clinical, biochemical and instrumental research methods. D-dimer was quantitatively determined in blood serum by enzyme-linked immunosorbent assay (ELISA). The 140 patients were divided into two groups according to the level of D-dimers: normal level (0.5 mg/l) and elevated level (≥0.5 mg/l). Elevated D-dimer levels were associated with an increased age of patients, decreased glomerular filtration rate, decreased blood albumin level, increased daily protein excretion and a tendency to develop thromboembolic complications during 1 year of monitoring. D-dimer is a biological marker that can detect hypercoagulation at an early preclinical stage in patients with CKD and identify patients with an increased cardiovascular risk, thereby promoting the earliest use of antiplatelet agents and anticoagulants and, consequently, it can reduce mortality
Доп.точки доступа:
Mykhaloiko, I. S.
Dudar, I. O.
Mykhaloiko, I. Ja.
Mykhaloiko, O. Ja.

Свободных экз. нет

Найти похожие

4.


    Danylova, T. V.
    Nobel prize winner Erwin Schrodinger: the physicist, philosopher, and godfather of molecular biology and genetics / T. V. Danylova, S. V. Komisarenko // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P93-100


MeSH-главная:
НОБЕЛЕВСКАЯ ПРЕМИЯ -- NOBEL PRIZE
Аннотация: The brilliant book “What is Life? The Physical Aspect of the Living Cell” authored by the prominent Nobel Prize-winning Austrian physicist Erwin Schrödinger became a successful attempt to bridge the gap between physics and biology. The philosophical thought of one of the founders of quantum mechanics inspired him to look closer at the enigma of life through the lens of quantum physics. A prominent physicist was focused on the thermodynamics of the living organisms and the nature of heredity. Schrödinger introduced the concept and notion of “negative entropy”, suggested the idea of a genetic code and argued that the genetic material had to have a non-repetitive molecular structure. He considered a molecule as a solid – aperiodic crystal that forms the hereditary substance. Despite the fact that his book provoked different interpretations and his ideas were modified by later scientific development, it was Schrödinger who paved the way for the future research of genes: his book inspired the next generation of scientists to look for a secret life code, which was eventually found. His outstanding writing is still one of the most profound introductions into the subject and raises new questions. Schrödinger’s genius reshapes our view on the nature and essence of life creating a launching pad for the new transdisciplinary paradigm, which can contribute to the development of a unified theory of everything in the spirit of Schrödinger’s philosophy.
Доп.точки доступа:
Komisarenko, S. V.
Schrodinger, Erwin (12.08.1887-04.01.1961) \о нем\

Свободных экз. нет

Найти похожие

5.


   
    Identification of the binding site for plasminogen kringle 5 in the α-chain of fibrin(ogen) D-fragment / L. G. Kapustianenko [et al.] // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P46-57


MeSH-главная:
ФИБРИН -- FIBRIN (анализ, аналоги и дериваты, выделение и очистка)
Аннотация: The interaction of the fifth kringle of Glu-plasminogen with fibrin triggers activation and initiation of fibrinolysis, yet the site on fibrin that binds kringle 5 remains unknown. The aim of our work was to determine an amino acid sequence in the D-fragment of fibrin(ogen) molecule, which is complementary to the lysine-binding site (LBS) in kringle 5. We studied the interaction between kringle 5 of plasminogen with polypeptide chains of the D-fragments of fibrin and cyanogen bromide fragments FCB-2 and t-NDSK and showed that kringle 5 bound specifically to α- and γ-chains of the D-fragment and the α-chain of FCB-2. Tryptic peptides of D-fragment α-chain were obtained, separated by their ability to bind with the immobilized kringle 5, and then all studied peptides were characterized by MALDI-TOF analysis. The critical amino acid residues of the α-chain of D-fragment, which provide its interaction with kringle 5, turned out to be α171Arg and/or α176Lys. The binding site of Glu-plasminogen complementary to the LBS of kringle 5 is located within Аα168Ala−183Lys, a sequence in a weakly structured loop between two supercoils in the α-chain of the D-fragment of the fibrin(ogen) molecule
Доп.точки доступа:
Kapustianenko, L. G.
Grinenko, T. V.
Rebriev, A. V.
Yusova, O. I.
Tykhomyrov, A. A.

Свободных экз. нет

Найти похожие

6.


    Medved, L.
    Structure and function of fibrinogen BβN-Domains / L. Medved, S. Yakovlev // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P22-32


MeSH-главная:
ФИБРИНОГЕН -- FIBRINOGEN (анализ, выделение и очистка, метаболизм)
Аннотация: Fibrinogen is a polyfunctional plasma protein involved in various physiological and pathological processes through the interaction of its multiple domains with different ligands and cell receptors. Among fibrinogen domains, two BβN-domains are formed by the N-terminal portions of its two Bβ chains including­ amino acid residues Bβ1-64. Although their folding status is not well understood and the recombinant disulfide-linked (Bβ1-66)2 fragment corresponding to a pair of these domains was found to be unfolded, some data suggest that these domains may be folded in the parent molecule. In contrast, their major functional properties are well established. Removal of fibrinopeptides B (amino acid residues Bβ1-14) from these domains upon fibrinogen to fibrin conversion results in the exposure of multiple binding sites in fibrin βN-domains (residues β15-64). These sites provide interaction of the βN-domains with different proteins and cells and their participation in various processes including fibrin assembly, fibrin-dependent angiogenesis, and fibrin-dependent leukocyte transmigration and thereby inflammation. The objective of this review is to summarize the current view of the structure and function of these domains in fibrinogen and fibrin and their role in the above-mentioned processes
Доп.точки доступа:
Yakovlev, S.

Свободных экз. нет

Найти похожие

7.


   
    Novel monoclonal antibody to fibrin(ogen) αC-region for detection of the earliest forms of soluble fibrin / N. E. Lugovska [et al.] // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P58-70


MeSH-главная:
ФИБРИН -- FIBRIN (анализ, аналоги и дериваты, биосинтез, выделение и очистка)
Аннотация: Obtaining new monoclonal antibodies (mAbs) towards fibrin(ogen) and its fragments is an important task for studying mechanisms of blood clot formation, searching for novel antithrombotic agents and developing immunodiagnostics. The aim of the present work was to create and characterize a new mAb towards the fibrin(ogen) αС-region. We surmise that having a specific mAb towards this flexible part of the molecule will allow us to study the role of the αС-region in fibrin polymerization and also to develop an approach for detecting the earliest forms of soluble fibrin by sandwich ELISA. Using hybridoma technology we оbtained mAb 1-5A to the αC-region of fibrinogen. It was characterized using several variations of ELISA and Western blot. Application of specific proteases together with MALDI-TOF analysis allowed us to localize its epitope that is located in fragment 537-595 of the Aα-chain of fibrin(ogen). МAb 1-5A can be used as a detecting tag-antibody in sandwich ELISA for the quantification of the earliest forms of soluble fibrin which are uncleaved by plasmin and preserved C-terminal portions of αC-regions. These earliest forms of soluble fibrin are direct evidence of blood coagulation system activation, thrombin generation and the danger of intravascular thrombus formation. Their determination will provide additional, more accurate information about the state of the blood coagulation system and the risk of blood clotting, which is very important for the timely and correct selection of adequate antithrombotic therapy. MAb 1-5A effectively binds the αC-containing molecules of fibrinogen and fibrin in blood plasma. It also can be used for studying protein-protein and protein-cellular interactions of the αC-regions of fibrin(ogen)
Доп.точки доступа:
Lugovska, N. E.
Kolesnikova, I. M.
Stohnii, Ye. M.
Chernyshenko, V. O.
Rebriev, A. V.
Kostiuchenko, O. P.
Gogolinska, G. K.
Dziubliuk, N. A.
Varbanets, L. D.
Platonova, T. M.
Komisarenko, S. V.

Свободных экз. нет

Найти похожие

8.


    Panibratiuk, O. A.
    Warfarin therapy in patients with coronary heart disease and atrial fibrillation: drug interactions and genetic sensitivity to warfarin / O. A. Panibratiuk, O. A. Yakovleva // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P77-85


MeSH-главная:
КОРОНАРНАЯ БОЛЕЗНЬ -- CORONARY DISEASE (генетика, патофизиология, терапия)
ВАРФАРИН -- WARFARIN (анализ, терапевтическое применение)
Аннотация: In this research work we examined the effect of various factors on the efficacy and safety of warfarin pharmacotherapy. Particular emphasis was placed on drug interaction in the standardized treatment of patients with coronary heart disease and atrial fibrillation. Since the administration of such drugs as digoxin and statins with warfarin leads to an increase in the blood level of all three drugs (they interact at the level of P-glycoprotein) and warfarin has a narrow therapeutic window, the risk of hemorrhagic complications is increased. For the first time in patients of the Podillya region of Ukraine, the genetic polymorphism of cytochrome CYP2C9 was determined, which is associated with the slow withdrawal of anticoagulant from the bloodstream and the possible risk of bleeding. For safe pharmacotherapy, patients were given significantly different doses of warfarin in all comparison groups, according to the International Normalized Ratiо (INR). For example, in the group with a CYP2C9 mutation present, the dose was 3.08 ± 0.25 mg versus 4.15 ± 0.22 mg in the non-mutation group (P = 0.008). In addition, in patients with genetic polymorphism of detoxification enzymes, significantly more bleeding events (light or clinically significant; critical organ bleeding) were observed, but among these patients bleeding occurred at an INR of 2.6 (despite the recommendations of the European Society of Cardiology, that the INR can be maintained within 2.0-3.0). Therefore, patients with CYP2C9 mutations require a personalized approach and control of the INR in a safer range (2.0 to 2.5) and consideration of drug interactions
Доп.точки доступа:
Yakovleva, O. A.

Свободных экз. нет

Найти похожие

9.


   
    The fibrin Bβ125-135 site is involved in the lateral association of protofibrils / E. Lugovskoi [et al.] // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - P33-45


MeSH-главная:
ФИБРИН -- FIBRIN (анализ, выделение и очистка)
Аннотация: Earlier we reported that during the human fibrinogen to fibrin transition a neoantigenic determinant was exposed in the Bβ119-133 fragment, where a hinge locus is situated. The fibrin-specific mAb FnI-3c and its Fab-fragment with epitope in this fragment inhibited the lateral association of protofibrils. We suggested that the epitope coincided with a site involved in this process. In this work we investigated the epitope location more precisely and defined a functional role for its exposure in the hinge locus of the molecule. It was found that mAb FnI-3c bound to human, horse and rabbit fibrins, all of which have Lys in the position corresponding­ to human BβK130, but not to bovine and rat fibrins, which have other amino acid residues in this position, strongly suggesting that BβK130 provides the integral part of the epitope. This fact, homology data, and structural biological analysis of the amino acid sequences around BβK130 indicate that the site of interest is localized within Bβ125-135. The synthetic peptides Bβ121-138 and Bβ125-135, unlike their scrambled versions, bound to mAb FnI-3c in SPR analysis. Both peptides, but not their scrambled versions, inhibited the lateral association of protofibrils. The FnI-3c epitope is exposed after fibrinopeptide A cleavage and desA fibrin monomer formation. Structural biological analysis of the fibrinogen to fibrin transition showed a distinct increase of flexibility in the hinge locus. We propose that the structural transformation in the fibrin hinge regions leads to the conformation necessary for lateral association of protofibrils
Доп.точки доступа:
Lugovskoi, E.
Pydiura, N.
Makogonenko, Y.
Urvant, L.
Gritsenko, P.
Kolesnicova, I.
Lugovska, N.
Komisarenko, S.

Свободных экз. нет

Найти похожие

10.


    Vari, S. G.
    COVID-19 infection: disease mechanism, vascular dysfunction, immune responses, markers, multiorgan failure, treatments, and vaccination / S. G. Vari // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3 : 21


MeSH-главная:
КОРОНАВИРУСНЫЕ ИНФЕКЦИИ -- CORONAVIRUS INFECTIONS (вирусология, генетика, диагностика, диетотерапия, иммунология, классификация, кровь, лекарственная терапия, метаболизм, микробиология, осложнения, патофизиология, передача, профилактика и контроль, смертность, терапия)
Аннотация: The new SARS-CoV-2 virus is a great danger for the worldwide population since there is no known pre-immunity, no specific treatment, and no vaccine. Still, the testing and tracing are the best tools to isolate the infected and prevent the spread of COVID-19. The major goals are to save lives, reduce the mortality rate, increase the survival rate of those are in severe or critical conditions, reduce the hospital stay and accelera­te the recovery. This review summarizes the findings on the novel coronavirus that causes COVID-19 and outlines information about symptoms, testing, disease mechanism, vascular dysfunction, immune responses, treatments, and vaccination. At this time no vaccine is available to prevent COVID-19. A literature review reveals that more research is necessary to investigate the interactions between respiratory viruses, human coronaviruses, and the new SARS-CoV-2 virus in the infected population to guide the design of COVID-19 specific therapeutics and vaccines. Almost every government on earth has realized that daily life cannot return to normal until citizens have built up antibodies to safeguard them from the virus. Scientists and manufacturers worldwide are accelerating COVID-19 vaccine research, and pharmaceutical companies are already investing in the large-scale production of vaccines. A synopsis of the most recent sources presented in this review was the starting point for several COVID-19 research projects in the Regional Cooperation for Health, Science and Technology (RECOOP HST) Association managed by Cedars – Sinai Medical Center to gain a better understanding of the COVID-19 disease
Свободных экз. нет

Найти похожие

11.


    Григор’єва, М. В.
    20 років тому завершилися "перегони" секвенування геному людини / М. В. Григор’єва, С. В. Комісаренко // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - С. 91-92


MeSH-главная:
ГЕНОМ ЧЕЛОВЕКА -- GENOME, HUMAN
Аннотация: The Human Genome Project, one of the most grandiose in contemporary science, was officially launched in 1990. The project aimed at determining the human DNA primary structure and gene localization and functions as well as ensuring free access of researchers to the project’s findings. The HGP was implemented by the International Human Genome Sequencing Consortium, sponsored by the US Department of Energy, and the UK-based private company Celera Genomics. The results of the two teams’ work, including the rough draft of the human genome sequence, were published in Nature and Science in February 2001 within one day of each other, and the final version appeared three years after. The HGP’s revolutionary impact on biology and medicine cannot be overstated.
Доп.точки доступа:
Комісаренко, С. В.

Свободных экз. нет

Найти похожие

12.


   
    До 70-річчя від дня народження члена-кореспондента НАН України, професора Ростислава Стефановича Стойки // The Ukrainian biochemical journal. - 2020. - Vol. 92, № 3. - С. 101-102


MeSH-главная:
БИОХИМИЯ -- BIOCHEMISTRY (история, кадры)
Аннотация: Професор Ростислав Стефанович Стойка - доктор біологічних наук, член-кореспондент НАН України, відомий вчений у галузі біохімії, клітинної та молекулярної біології
Доп.точки доступа:
Стойка, Ростислав Стефанович (біохімік ; 1950-) \про нього\

Свободных экз. нет

Найти похожие

 
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)